

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 3302-3305

¹⁵N NMR spectroscopy of partially saturated pyrazoles

Lara De Benassuti, Teresa Recca and Giorgio Molteni*

Università degli Studi di Milano, Dipartimento di Chimica Organica e Industriale, Via Golgi 19, 20133 Milano, Italy

Received 30 November 2006; revised 29 January 2007; accepted 15 February 2007 Available online 20 February 2007

Abstract—Partially saturated pyrazoles, namely 1-(4-substituted)phenyl-3-methoxycarbonyl-5-ethoxycarbonyl-4,5-dihydropyrazoles, were submitted to extensive ¹⁵N NMR spectroscopic analyses, performed in natural abundance. Nitrogen chemical shifts were measured by means of INEPT and HMBC experiments, while long range proton–nitrogen scalar coupling values were taken through *J*-HMBC experiments. A linear plot between nitrogen chemical shifts and Hammett σ_p was observed, enabling us to relate quantitatively the observed chemical shifts to the electronic features of the substituent in the 1-position of the 4,5-dihydropyrazole ring. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Due to its relevance in both chemical and biological research, increasing attention has been devoted to the field of ¹⁵N NMR spectroscopy.¹ In particular, the chemical shifts of some aromatic azoles have been investigated through ¹⁵N NMR spectroscopy of ¹⁵N-enriched substrates,^{2,3} but there is a lack of data concerning partially saturated rings.

As a representative of such systems, 4,5-dihydropyrazoles are particularly attractive compounds since they display a number of interesting features. Several 4,5-dihydropyrazole derivatives find application as anti-inflammatory, antipyretic or analgesic agents,⁴ dyestuffs⁵ and couplers in colour photography.⁶ In order to gain more insight about the spectroscopic features of these compounds, we decided to submit a series of 1-(4-substituted)phenyl-3-methoxycarbonyl-5-ethoxycarbonyl-4,5-dihydropyrazoles **1** to extensive ¹⁵N NMR spectroscopic analyses.

2. Results and discussion

First, analytically pure samples of compounds **1** were obtained following a nitrilimine-based cycloadditive protocol, which has been developed in our group,⁷ concerning the regioselective synthesis of 5-substituted 4,5-dihydropyrazoles (Scheme 1). The choice of water as an unusual reaction medium relies upon two major points: (*i*) cycloaddition rates are significantly increased with respect to the classic method and (*ii*) the separation of products is performed by simple filtration of the reaction crude products. As expected,

cycloadducts **1** were formed as the only regioisomers, whose ¹H NMR spectra are in full agreement with those reported in the literature for similar 1-aryl-3-alkoxycarbonyl-5substituted-4,5-dihydropyrazoles.^{8–10} The diastereotopic hydrogens bonded to the C-4 position of the 4,5-dihydropyrazole ring appear as two distinct doublet of doublets in the range $\delta_{\rm H}$ 3.20–3.80. This represents the AB portion of the ABX set of signals, which is typical of compounds such as **1**. The X portion of the latter signals appears as a doublet of doublets and is found between $\delta_{\rm H}$ 4.80 and 5.10 being clearly related to the resonance of the proton in the C-5 position.

a: R = H, **b**: R = Me, **c**: R = OMe, **d**: R = Cl, **e**: R = NO₂

Scheme 1.

The ¹⁵N nuclear shielding data of 4,5-dihydropyrazoles **1** were obtained through both ¹⁵N INEPT and HMBC ¹H–¹⁵N sequences of pulses (see Section 4) and are summarised in Table 1. It may be pointed out that since $\Delta\delta$ values of Table 1 are referred to compound **1a** (R=H), negative values of $\Delta\delta$ indicate that the nitrogen resonance is shifted upfield. A variety of solvents were used, namely CDCl₃, acetone-*d*₆, DMSO-*d*₆ and deuterated benzene, while the sample concentration was always 0.50 M. We were confident to assign

^{*} Corresponding author. Tel.: +39 02 50314141; fax: +39 02 50314139; e-mail: giorgio.molteni@unimi.it

^{0040–4020/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2007.02.063

 Table 1.
 ¹⁵N chemical shifts of 1-(4-substituted)phenyl-3-methoxycarbonyl-5-ethoxycarbonyl-4,5-dihydropyrazoles 1

R	Solvent	δN_1	δN_2	$\Delta \delta N_1$	$\Delta \delta N_2$
MeO	CDCl ₃	-218.77	-21.54	-1.75	1.55
Me	CDCl ₃	-217.36	-22.39	-0.34	0.70
Н	CDCl ₃	-217.02	-23.09	0.00	0.00
Cl	CDCl ₃	-218.36	-24.69	-1.34	-1.60
NO_2	CDCl ₃	-214.09	-27.66	2.93	-4.57
MeŌ	$(CD_3)_2CO$	-219.21	-21.62	-1.56	1.75
Me	$(CD_3)_2CO$	-218.15	-22.54	-0.50	0.83
Н	$(CD_3)_2CO$	-217.65	-23.37	0.00	0.00
Cl	$(CD_3)_2CO$	-219.09	-25.18	-1.44	-1.81
NO ₂	$(CD_3)_2CO$	-213.88	-28.65	3.77	-5.28
MeO	DMSO- d_6	-219.94	-23.26	-1.64	1.92
Me	DMSO- d_6	-218.72	-24.41	-0.42	0.77
Н	DMSO- d_6	-218.30	-25.18	0.00	0.00
Cl	DMSO- d_6	-219.25	-26.53	-0.95	-1.35
NO ₂	DMSO- d_6	-215.49	-29.06	2.81	-3.88
MeO	C ₆ D ₆	-218.80	-20.66	-1.67	1.41
Me	C_6D_6	-217.58	-21.14	-0.45	0.93
Н	C_6D_6	-217.13	-22.07	0.00	0.00
Cl	C_6D_6	-218.81	-23.43	-1.68	-1.36
NO_2	C_6D_6	-214.20	-26.46	2.93	-4.39

chemical shift values for N_1 and N_2 on the basis of their very different chemical nature, which means that the sp²-hybridised N_2 must be strongly deshielded with respect to N_1 , as confirmed by 2D-HMBC experiments. This agrees with the known chemical shift of both sp² and sp³ nitrogens of simple heterocycles.¹¹ It is worth noting that all the above experiments were performed in natural abundance thus avoiding the synthesis of ¹⁵N-enriched compounds. To the best of our knowledge, the present paper represents the first study of partially saturated azoles performed in natural abundance. The lack of ¹⁵N labelled substrates did not produce excessive time-consuming experiments. As can be inferred from Table 1, change of solvent had little effect on nitrogen nuclear shielding. This latter comment can be visualised in a more intuitive way by Figure 1, in which ¹⁵N INEPT spectra of compound 1c is provided in all the mentioned solvents. Although it is known that nitrogen chemical shifts of aromatic azoles are somewhat affected by the change of the solvent,¹²⁻¹⁴ it may be recalled that these variations occur mainly because of explicit hydrogen bonding, a kind of interaction which is clearly lacking in our case. On the other hand, more significant changes of nitrogen nuclear shielding were produced by the change of R as illustrated by Figure 2 in which are shown the ¹⁵N INEPT spectra of 4,5dihydropyrazoles 1c and 1e in acetone- d_6 . As can be seen from both Table 1 and Figure 2, the N₁ nucleus is shifted downfield according to the electron withdrawing character of R, while the N₂ chemical shift followed the reverse trend. This latter observation is consistent with the upfield shift of some nitrogens,¹⁵ which is due to the dominance of the increase in the molecular-plane shielding over the decrease in the out-of-plane shielding. To this point, we were pleased to find that a plot of $\Delta \delta N_2$ versus Hammett σ_p (Fig. 3) resulted in a linear correlation, which was obtained by a stan-dard least-squares method.¹⁶ In benzene, the very good correlation coefficient $\rho = 0.9988$ was found for the straight line having equation $\Delta \delta N_2 = -5.756 \sigma_n - 0.0947$, while other solvents also show linear correlations with similar slope.¹⁷ This indicates that the solvent has little effect on the electron redistribution mechanism, which is operating in the 4,5-dihydropyrazole ring of cycloadducts 1. Disappointingly, plots of $\Delta \delta N_1$ against Hammett σ_p resulted in a scattering of points. The origin of this complex behaviour is yet unclear.

N.

Figure 1. ¹⁵N INEPT spectra of 4,5-dihydropyrazole 1c.

Figure 2. ¹⁵N INEPT spectra of 4,5-dihydropyrazoles 1c and 1e in acetone- d_6 . Resonance at $\delta = -10.07$ ppm is related to the ¹⁵N of the nitro group of 1e.

Figure 3. Linear plot of $\Delta \delta N_2$ versus Hammett σ_p in C₆D₆.

Finally, due to the usefulness of ${}^{3}J_{N-H}$ scalar couplings in the characterisation of isomeric pyrazoles,³ we measured the ${}^{15}N-C-C-H$ couplings of the 4,5-dihydropyrazole ring of 1 by means of *J*-HMBC experiments. The ${}^{3}J$ values listed in Table 2 encompass the range 5.7–6.4 Hz and are larger than that of aromatic pyrazoles³ and are scarcely dependent on the nature of R.

Table 2. ${}^{3}J$ Values of 4,5-dihydropyrazole cycloadducts 1 measured in DMSO- d_{6}^{a}

Type of ${}^{3}J$	R					
	OMe	Me	Н	Cl	NO ₂	
${}^{3}J_{N_{1}-H_{A}}$	6.2	6.2	6.1	6.2	6.2	
${}^{3}J_{N_{1}-H_{R}}$	6.2	6.2	6.1	6.3	6.2	
${}^{3}J_{N_{2}-H_{A}}$	6.4	6.2	5.7	6.1	6.2	
${}^{3}J_{N_2-H_R}$	6.1	6.2	6.2	6.2	6.2	
${}^{3}J_{N_{1}-H_{X}}$	6.2	6.1	6.2	6.2	6.2	

^a ^{3}J Values are given in hertz.

3. Conclusions

Three major conclusions may be drawn from the present paper: (*i*) ¹⁵N NMR spectroscopic data (chemical shifts and scalar coupling constants) concerning partially saturated pyrazoles were reported for the first time by means of experiments performed in natural abundance; (*ii*) solvent changes had little or no influence on the chemical shifts; (*iii*) a linear plot of $\Delta\delta N_2$ versus Hammett σ_p was observed, enabling us

to relate quantitatively the observed chemical shift to the electronic features of R.

4. Experimental

Compounds **1a–1c** and **1e** are known in the literature.⁷

4.1. 1-(4-Substituted)phenyl-3-methoxycarbonyl-5ethoxycarbonyl-4,5-dihydropyrazoles 1

A mixture of the appropriate hydrazonoyl chloride (1.0 mmol), ethyl acrylate (0.40 g, 4.0 mmol), tetrahexyl ammonium chloride (38 mg, 0.1 mmol) and 5% aqueous sodium hydrogen carbonate (12 mL) was mechanically shaken at room temperature for 2 h. In the case of R=H, Me, MeO, the mixture was filtered; the solid material was washed with water (2×25 mL) and dried giving pure **1a–1c**. Isolated yields of products **1a–1c** were as follows: **1a**: 0.25 g, 90%; **1b**: 0.28 g, 95%; **1c**: 0.29 g, 95%.

In the case of R=Cl the mixture was filtered; the solid material was washed with water (10 mL) and dried. Crystallisation from *i*-Pr₂O/*i*-PrOH gave pure **1d** (0.24 g, 76%) as a pale yellow powder having mp 83 °C. IR (Nujol) 1735, 1730 (cm⁻¹); ¹H NMR (CDCl₃) δ : 1.18 (3H, t, *J*=7.0), 3.23 (1H, dd, *J*=17.0, 6.7), 3.53 (1H, dd, *J*=17.0, 12.5), 3.81 (3H, s), 4.22 (2H, q, *J*=7.0), 4.88 (1H, dd, *J*=12.5, 6.7), 7.0–7.4 (4H, m); ¹³C NMR (CDCl₃) δ : 22.3 (CH₃), 50.4 (CH₂), 52.7 (CH₃), 53.1 (CH₂), 65.5 (CH), 118.3 (CH), 127.0–130.0, 133.4 (C), 140.7 (C), 144.6 (C), 168.3 (C), 170.9 (C); MS *m/z* 310 (M⁺). Anal. Calcd for C₁₄H₁₅ClN₂O₄: C, 54.11; H, 4.87; Cl, 11.41; N, 9.02. Found: C, 54.07; H, 4.90; Cl, 11.48; N, 8.97.

In the case of R=NO₂ the mixture was taken up with CH₂Cl₂ (40 mL). The organic layer was washed with water (2×25 mL), dried over Na₂SO₄ and evaporated. The residue was chromatographed on a silica gel column with Et₂O. The fraction with R_f =0.57 was crystallised from hexane/toluene affording pure **1e** (35 mg, 11%).

4.2. ¹⁵N NMR spectroscopic experiments

NMR spectra were acquired on a Bruker Avance 400 MHz (40.560 MHz for ^{15}N) or on AMX 300 MHz (30.424 MHz

for 15 N) spectrometer, both equipped with a 5 mm inverse *z*-gradient probe.

¹⁵N chemical shifts were measured both directly, via INEPT experiments, and indirectly, via ¹H–¹⁵N long range correlation.

The INEPT spectra were recorded over a range of 300 ppm with a *J* value of 5 Hz and a relaxation delay of 2 s.

The HMBC spectra are recorded with a J value of 5 Hz, spectral width of 300 ppm in F1 dimension, a relaxation delay of 1.5 s; data matrices of 1024×256 points (eight scans) were zero filled in F1 dimension to 1024 points.

 $J_{\text{H-N}}$ long range were recorded by means of *J*-HMBC experiment of samples in DMSO- d_6 solution, with the following parameters: relaxation delay 4.0 s, scaling factor=23, J=4 Hz, 16 scans.

In all experiments nitromethane was used as reference of ¹⁵N chemical shifts (δ =0 ppm).

Acknowledgements

Thanks are due to MURST for financial support.

References and notes

1. Witanowsky, M.; Stefaniak, L. Annu. Rep. NMR Spectrosc. 1986, 18, 1.

- 2. Axenrod, T.; Watnick, C. M.; Wieder, M. J. Org. Magn. Reson. 1979, 12, 476.
- Stefaniak, L.; Roberts, J. D.; Witanowsky, M.; Webb, G. A. Org. Magn. Reson. 1984, 22, 215.
- Mazzone, G.; Puglisi, G.; Corsaro, A.; Panico, A.; Bonina, F.; Amico-Roxas, M.; Caruso, A.; Trombadore, S. *Eur. J. Med. Chem.* 1986, 21, 277.
- 5. Ji, S.-J.; Hai, H.-B. Dyes Pigments 2006, 70, 246.
- 6. Theys, R. D.; Sosnovsky, G. Chem. Rev. 1997, 97, 83.
- Molteni, G.; Ponti, A.; Orlandi, M. New J. Chem. 2002, 26, 1340.
- 8. Paul, R.; Tchelitcheff, S. Bull. Soc. Chim. Fr. 1967, 4179.
- 9. Shimizu, T.; Hayashi, Y.; Nishio, T.; Teramura, K. Bull. Chem. Soc. Jpn. **1984**, 57, 787.
- 10. Shawali, A. S.; Ezmirly, S. T. J. Heterocycl. Chem. 1988, 25, 257.
- Katritzky, A. R.; Lagowski, J. M. *Comprehensive Heterocyclic Chemistry*; Potts, K. T., Ed.; Pergamon: Oxford, 1985; Vol. 5, Chapter 4.01, p 1.
- 12. Witanowski, M.; Sicinska, W.; Grabowski, Z.; Webb, G. A. *J. Magn. Reson.* **1993**, *104*, 310.
- Witanowski, M.; Sicinska, W.; Biedrzycka, Z.; Webb, G. A. J. Magn. Reson. 1994, 109, 177.
- 14. Witanowski, M.; Biedrzycka, Z.; Sicinska, W.; Grabowski, Z. J. Magn. Reson. 1998, 131, 54.
- Gatti, C.; Ponti, A.; Ganba, A.; Pagani, G. J. Am. Chem. Soc. 1992, 114, 8634.
- Press, W. H.; Flammery, B. P.; Teukolsky, S. A.; Wetterling, W. T. Numerical Recipes, The Art of Scientific Computing; Cambridge University Press: Cambridge, 1986.
- 17. (a) In CDCl₃: $\Delta\delta N_2 = -5.956\sigma_p 0.177$; $\rho = 0.9947$; (b) In (CD₃)₂CO: $\Delta\delta N_2 = -6.861\sigma_p 0.202$; $\rho = 0.9958$; (c) In DMSO- d_6 : $\Delta\delta N_2 = -5.473\sigma_p + 0.0503$; $\rho = 0.9837$.